Chalcogenide semiconductor research and applications

Tutorial 2: Thin film characterization

Rafael Jaramillo
Massachusetts Institute of Technology
Section 1: Measuring composition
Semiconductor composition analysis

- Optoelectronic properties are determined by intrinsic and extrinsic defects at ppm (10^{-6}) levels, and below
- Typical analysis techniques for thin films have precision of ~0.5%, and accuracy of ~10% (and much worse for oxides)

What do we do?
Considering the options

Electron-in, X-ray out
- Energy-dispersive spectroscopy (EDS)
 - Typically available in electron microscopes
 - Resolution & accuracy <5%
- Wavelength-dispersive spectroscopy (WDS)
 - Require specialized electron microprobe systems
 - Resolution & accuracy <1%

X-ray in, X-ray out
- X-ray fluorescence spectroscopy (XRF)
 - Relatively low-cost, accessible
 - Resolution & accuracy <5% (better with standards)

X-ray in, electron out
- X-ray photoelectron spectroscopy (XPS)
 - Highly surface-sensitive
 - Resolution & accuracy <5%

Electron-in, electron-out
- Auger nanoprobe
 - Resolution & accuracy <5%
 - Excellent spatial resolution

Ion-in, ion-out
- Rutheford backscattering (RBS)
 - Resolution & accuracy <5%
 - Uniquely sensitive to oxygen
- Secondary ion mass spectroscopy (SIMS)
 - Resolution & accuracy <ppm
 - Highly technical

Always consider probe & escape depths!
Section 2: Measuring optical properties
• Measure transmission (T) and reflection (R) of a planar material stack

• Quantitative goals:
 – Optical absorption coefficient (α)
 – Band gap (E_g)

• Unknowns abound
 – Reflection & transmission coefficients at each interface
 – Indices of refraction
 – Thicknesses
Simplifications and assumptions

• Simplification 1: Normal incidence
 – Polarization doesn’t matter
• Simplification 2: Substrate is non-existent
 – \(T_{10} = 1 - R_{10} \)
• Simplification 3: Film is fairly opaque
 – All light absorbed by 2\(^{nd}\) pass through the film
 – \(e^{-\alpha d} << 1, \alpha >> 1/d \)

\[
\alpha = -\frac{1}{d} \ln \left(\frac{T}{(1 - R)^2} \right)
\]
Simplifications and assumptions

- Simplification 4: Effective mass model, parabolic band edges, allowed vertical transitions
 - Tauc equation ($n = 1$ for direct band gap)

\[\alpha = \frac{A(h\nu - E_g)^n}{h\nu} \]
Implications of the simplifications

- Evaluate assumptions to determine valid regime for Tauc analysis
- Simplification 3
 - $\alpha >> 1/d$
 - Typical film thickness $= 1 \, \mu m \Rightarrow \alpha >> 10^4 \, \text{cm}^{-1}$
- Simplification 4
 - Effective mass model
 - $E_g < h\nu < E_g + 200 \, \text{meV}$ (approximate)
Implications of the simplifications

- Need to discard $\alpha(h\nu)$ data before Tauc analysis
 - Discard data at the low end that doesn’t satisfy $\alpha >> 1/d$
 - Discard data at the high end that doesn’t satisfy effective mass approximation
Section 3: Measuring electrical transport properties
• Drude model relates conductivity (σ) to free carrier concentration (n) and drift mobility (μ)
 – Mobility is determined by generation and dissipation of momentum
 – Carrier mass (m) determines velocity for given impulse
 – Momentum relaxation time (t) characterizes randomization of carrier motion following given impulse
• Low-field current-voltage measurements – with ohmic contacts and well-defined geometry – determine σ
• Hall magnetotransport measurements used to disentangle n and μ
 – Hall mobility \neq drift mobility, but we will ignore this

\begin{align*}
 J &= \sigma E \\
 \sigma &= qn\mu \\
 \mu &= q\tau/m
\end{align*}

Drude model

Typical Hall bar measurement geometry
Details of Hall measurements

- Hall voltage (V_H) depends simply on carrier concentration (n) for single conduction band
- Realistic samples have lead placement error (ε) that mixes Hall voltage (V_H) and longitudinal voltage (V_L)

\[
V_L = I_x \frac{1}{\sigma \ v t} = I_x \frac{1}{q n \mu \ v t}
\]
Practical complications

- Signal (V_H) tends to vary slowly in time as magnetic field is swept.
- Background (V_L) can vary slowly in time due to temperature drift, variable illumination, etc.
- Slowly varying signal and background
 - Need large signal/background (V_H/V_L)

Signal/background:

$$\frac{V_H}{V_L} = \frac{\frac{I_x B_z}{ntq}}{\frac{1}{n\mu \varepsilon} \frac{\varepsilon}{wt}} = \frac{B_z \mu}{\varepsilon/w}$$

- Geometric factor $x = \varepsilon/w$
Practical limits of Hall measurements for low-mobility samples

- Lead placement error limits sensitivity of Hall measurements for low-mobility samples

- Typical van der Pauw sample, $x \sim 0.1$
 - Challenging to measure $\mu < 10 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

- Lithographically-defined Hall bar, $x < 0.01$
 - Possible to measure $\mu < 1 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$
High-conductivity samples encounter limitations due to small Hall voltage.

Depends on mobility and sample geometry.

Measuring small voltages (<1 μV) possible with lock-in measurements.
Section 4: Measuring minority carrier properties
Doped semiconductors have majority and minority carrier types.

Most electronic transport measurements are insensitive to minority carriers.

Minority carrier processes are critically important for a range of semiconductor technologies:

- Transistors
- Photodetectors
- Lighting
- Solar cells
- Photochemistry
Minority carrier transport in solar cells

- Superposition principle
 - Illumination current
 - + Diode forward current
 - = Total current
- Good solar cell has
 - Large illumination current
 - Large diode turn-on voltage, good rectification
Electron-hole pairs are generated (G) as the light is absorbed.

Each electron-hole pair has a probability P of being collected.

P is controlled by the diffusion length L_{diff}.

L_{diff} is controlled by lifetime τ.

\[
J_{\text{ill}} = \int \, dx \, G \, P
\]

\[
L_{\text{diff}} = \sqrt{D \tau}
\]

beware!
Turn on voltage and V_{OC}

- Diode equation
- Saturation current density J_0
 - Electron-hole recombination via:
 - Light emission (a light emitting diode)
 - Band-to-band tunneling
 - Auger recombination
 - Defect-assisted recombination (bulk)
 - Defect-assisted recombination (interface)
 - $J_0 = J_{0,1} + J_{0,2} + \ldots$

Effect of recombination currents on V_{OC}

$$J_{dark} = J_0 \left(e^{\frac{qV}{kT}} - 1 \right)$$

$$V_{OC} = \frac{kT}{q} \ln \left(\frac{J_{ill}}{J_0} + 1 \right)$$
Turn on voltage and V_{OC}

- Diode equation
- Saturation current density J_0
 - Electron-hole recombination via:
 - Light emission (a light emitting diode)
 - Band-to-band tunneling
 - Auger recombination
 - Defect-assisted recombination (bulk)
 - Defect-assisted recombination (interface)
 - $J_0 = J_{0,1} + J_{0,2} + \ldots$

$R_{\text{radiative}} = Bpn$
$B \sim 10^{-14} - 10^{-10} \text{ cm}^3 \text{ s}^{-1}$

$R_{\text{Auger}} = C(nnp + pnp)$
$C \sim 10^{-30} \text{ cm}^6 \text{ s}^{-1}$

$R_{\text{defect}} = \frac{np}{n\tau_h + p\tau_e}$
$\tau \sim 10^{-12} - 10^{-3} \text{ cm}^3 \text{ s}^{-1}$

$J_{\text{surface}} = nS$
$S \sim 1 - 10^7 \text{ cm s}^{-1}$
Lifetime matters ... a lot

![Plot showing Efficiency vs. \(\tau \) (ns) for various materials.

Jaramillo et al., JAP 119, 035101 (2016)
Lifetime matters ... a lot

![Graph showing lifetime vs efficiency for various materials. The graph is divided into two regions: a red region labeled "NO" for materials with lower efficiency and a green region labeled "YES" for materials with higher efficiency. Different materials are represented by different symbols and colors.](image)

Jaramillo et al., JAP 119, 035101 (2016)
How to measure lifetime

- **Transient**
 - Photoluminescence
 - Photoconductivity

- **Steady state (or quasi steady state)**
 - Photoluminescence
 - Photoconductivity

Generate minority carriers (typically using light)

Measure material response, back out recombination rates through modeling
Challenges for metrology on thin films

Want to measure
- Bulk lifetime (τ)
- Surface recombination velocity (S)

Useful to have
- Optical absorptivity (α), reflectivity (R)
- Equilibrium carrier concentration (ρ)
- Samples of varying thickness
- Near-total surface passivation
- Minority carrier diffusivity
Instantaneous optical attenuation (Beer-Lambert) leads to exponential excess carrier profile in a uniform material layer.

Excess carriers move through drift & diffusion until reaching symmetrical, half-sine wave profile.

- Diffusion time \(t_{\text{diff}} = d^2/D \)
 - \(D \) = diffusion constant
 - \(d \) = thickness

Evolution of excess carrier concentration through Si wafer following instantaneous illumination at \(t = 0 \)

Does excess carrier profile matter?

Case I: Diffusion time \ll recombination time
- Excess carriers reach symmetrical profile
- At long times, free carriers decay with effective lifetime τ_{eff}
- τ_{eff} is a function of both bulk and surface recombination

Case II: Diffusion time \gg recombination time
- Excess carriers don’t reach symmetrical profile before recombining
- Carrier profile needs to be explicitly modeled to determine recombination rates
Solving for recombination rates in Case I

- Extract single exponential decay rate τ_{eff}^{-1} from long-time tail of experimental signal
- Measure samples with varying d and/or S to determine τ by regression

$$\frac{1}{\tau_{\text{eff}}} \approx \frac{1}{\tau} + \left(\frac{d^2}{\pi^2 D} + \frac{d}{2S} \right)$$

TRPL measurement of minority carrier recombination in CZTS thin film

Solving for recombination rates in Case II

- Fit data to drift-diffusion model of excess carrier transport

Jaramillo et al., JAP 119, 035101 (2016)
The problem with unknown diffusivity D

- Diffusivity (D) and surface-recombination velocity (S) are strongly correlated
 - $S =$ rate at which minority carriers are consumed at the surface
 - $D =$ rate at which minority carriers are transported to the interface
Other complications (not discussed here)

- Injection-dependence of bulk recombination
- Injection-dependence of surface recombination
- Ambipolar diffusivity and Dember effects

\[R_{\text{defect}} = \frac{np}{n\tau_h + p\tau_e} \]
Recombination rates & materials processing

Bulk and surface minority carrier recombination in SnS thin films

![Graph showing bulk and surface minority carrier recombination in SnS thin films](image)

S (cm/s) vs. τ_0 (ns)

- **TE1**: TE, not annealed, not oxidized

References:

Jaramillo et al., JAP 119, 035101 (2016)
Measuring composition is not easy, and may not be possible. Straightforward optical property measurements need to be interpreted carefully. Low-mobility semiconductors pose challenges for typical Hall measurements. Minority carriers recombine by different processes; “lifetime” measurements are ambiguous and should consider the application and focus on the relevant mechanisms.